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1  Introduction

Consider the problem of retarded functional 
equation,
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which implies that the solution of the problem 
(1) ̶ (2) is discontinuous (sectionally continuous) on 
(0, ]T .
So, we can give the following definition,
Definition 1 The discontinuous dynamical system is 
a problem of retarded functional equation,
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Definition 2  The equilibrium points of the
discontinuous dynamical system (3) is the solutions 
of the equation,
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Consider now the discontinuous dynamical 

system of the Logistic retarded functional equation 
with delay r > 0,
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we study here the existence of a unique

continuously dependent solution 1x L of 
theproblem (4) ̶ (5). The asymptotic stability (see 
[1] ̶  [7] ) at the equilibrium points will be studied. 
To study bifurcation and chaos, we take firstly r = 1 
and we compare the results with the results of the 
discrete dynamical system Logistic difference 
equations,
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Secondly, we take some other values of r and T will 
be studied as examples.

2 Existence and Uniqueness
Let 1 1[0, ],L L T T   be the class of Lebesgue 
integrable functions on [0, T] with norm
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Definition 3  By a solution of the problem (4) ̶ (5)

we mean a function 1x L satisfying the problem 
(4) ̶ (5).
Theorem 1  The problem (4) ̶ (5) has a unique 

solution 1x L .
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If 1,   we deduce that 

Fx Fy x y  
and then the problem (4) ̶ (5) has, on D, a unique 

solution 1x L . �

3  Continuous dependence on initial 
    conditions
Theorem 2  If 1  . Then the solution of the 
discontinuous dynamical system rep-resents the 
problem of the logistic retarded functional equation 
with delay (4) ̶ (5) is continuously dependent on the 
initial data in the sense that,

* *
0 0x x x x     

where *x  is the solution of the problem, 

*
0

( ) ( )[1 ( )], (0, ],

( ) , 0, (7)

x t x t r x t r t T

x t x t

    

 

Proof. Let ( )x t and *( )x t be the solution of the
two problems (4) ̶ (5) and (4) ̶ (7) respectively, then,

* *( ) ( ) ( ) ( ) ,x t x t x t r x t r    
which implies that

* *

0

* *

0

* * * *
0 0 0 00

( ) ( ) ( ) ( )

[ ( ) ( ) ( ) ( ) ]

[ ] ,

T

r T

r

r

x t x t x t r x t r dt

x t r x t r dt x t r x t r dt

x x dt x x r x x x x





  

     

        

       


 


and 

* *
0 0 ,

1

r
x x x x




  


which proves that 

* *
0 0 ,

1

r
x x x x

  


     


and the theorem is proved. �

4  Equilibrium Points and their asymptotic
    stability 

The equilibrium points of (4) are the solution of 
the equation
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The equilibrium point of (4) is locally
asymptotically sable if all the roots   of the
equation,

(1 2 ), (8)r
eqx  

satisfy 1   (see [8]).

Then the equilibrium point 0eqx   is locally

asymptotically sable if 1  , while the second 

equilibrium point 
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The equilibrium point 0eqx   is locally 

asymptotically sable if 1  , which is the same
as in the discrete case (6).  Also, when r = 1, we 

deduce that the equilibrium point
1

1 , 1eqx 


     

is  locally  asymptotically sable if 1 3,   which 
is the same as in the discrete case (6).
In studying (4) ̶ (5)  it may be useful to study the 
difference equation (6).
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5  Bifurcation and Chaos

In this section, some numerical simulations 
results are presented to show that dynamics
behaviors of the discontinuous dynamical system 
(4) ̶ (5) change for different values of r and T. To do 
this, we will use the bifurcation diagrams as 
follow:-
Example 1
1. we take r = 1 and t  [0, 50], in this case, we get 
the same behavior as in the discrete case (Figure 1).
2. we take r = 2 and t  [0, 50] (Figure 2).
3. we take r = 1.75 and t  [0, 50]  (Figure 3).
Example 2
1. we take r = 0.1 and t  [0, 5]  (Figure 4).
2. we take r = 0.2 and t  [0, 5] (Figure 5).
3. we take r = 0.3 and t  [0, 5] (Figure 6).

Figure 1: Bifurcation diagram of map (4) ̶ ( 5)
          with respect to  , r = 1 and  t  [0, 50].

Figure 2: Bifurcation diagram of map (4) ̶ ( 5)
          with respect to  , r = 2 and  t  [0, 50].

Figure 3: Bifurcation diagram of map (4) ̶ ( 5)
          with respect to  , r = 1.75 and  t [0, 50].

Figure 4: Bifurcation diagram of map (4) ̶ ( 5)
          with respect to  , r = 0.1 and  t  [0, 5].

Figure 5: Bifurcation diagram of map (4) ̶ ( 5)
          with respect to  , r = 0.2 and  t  [0, 5].
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Figure 6: Bifurcation diagram of map (4) ̶ ( 5)
               with respect to  , r = 0.3 and t [0,5].

From Figures (1 ̶ 6) we deduce that the change of r
and T effect of stability of the Logistic equation 
model, occurs of a bifurcation point, parameter sets 
for which a periodic behavior occur and parameter 
sets for which a chaotic behavior occur.

6  Conclusions 

The discrete dynamical system of the Logistic 
equation model describes the dynamical properties 
for the case r = 1 and the time is discrete t = 1,2,… . 

On the other hand, the discontinuous dynamical 
system of the Logistic equation model describes the 
dynamical properties for different values of the 
delayed parameter r  R+ and the time t  [0, T] is 
continuous.
Figures (1),(4) agrees with the results of the 
asymptotic stability, this confirm that our numerics 
are correct. Also from figures (1),(4) and (2),(5), it 
locks like that there is a scale that gives identical 
chaos behavior.

This shows the richness of the models of 
discontinuous dynamical systems.
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Repeating the process we can deduce that the solution of the problem (1) ̶ (2)  is given by 
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which implies that the solution of the problem 

(1) ̶ (2) is discontinuous (sectionally continuous) on 
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So, we can give the following definition,


Definition 1 The discontinuous dynamical system is a problem of retarded functional equation,
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Definition 2  The equilibrium points of the discontinuous dynamical system (3) is the solutions of the equation,
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Consider now the discontinuous dynamical system of the Logistic retarded functional equation with delay r > 0,
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we study here the existence of a unique continuously dependent solution 
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Secondly, we take some other values of r and T will be studied as examples. 

2  Existence and Uniqueness
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Definition 3  By a solution of the problem (4) ̶ (5) we mean a function 
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and then the problem (4) ̶ (5) has, on D, a unique solution 
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3  Continuous dependence on initial 
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and the theorem is proved. (

4  Equilibrium Points and their asymptotic


    stability 

The equilibrium points of (4) are the solution of the equation 
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In studying (4) ̶ (5)  it may be useful to study the difference equation (6).

5  Bifurcation and Chaos 

In this section, some numerical simulations results are presented to show that dynamics behaviors of the discontinuous dynamical system (4) ̶ (5) change for different values of r and T. To do this, we will use the bifurcation diagrams as follow:-


Example 1


1. we take r = 1 and  t ( [0, 50], in this case, we get the same behavior as in the discrete case (Figure 1).


2. we take r = 2 and  t ( [0, 50] (Figure 2).


3. we take r = 1.75 and  t ( [0, 50]  (Figure 3).


Example 2


1. we take r = 0.1 and  t ( [0, 5]  (Figure 4).


2. we take r = 0.2 and  t ( [0, 5] (Figure 5).


3. we take r = 0.3 and  t ( [0, 5] (Figure 6).
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Figure 3: Bifurcation diagram of map (4) ̶ ( 5)

          with respect to ( , r = 1.75 and  t( [0, 50].
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Figure 4: Bifurcation diagram of map (4) ̶ ( 5)

          with respect to ( , r = 0.1 and  t ( [0, 5].
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Figure 5: Bifurcation diagram of map (4) ̶ ( 5)

          with respect to ( , r = 0.2 and  t ( [0, 5].
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Figure 6: Bifurcation diagram of map (4) ̶ ( 5)

               with respect to ( , r = 0.3 and  t( [0,5].

From Figures (1 ̶ 6) we deduce that the change of r and T effect of stability of the Logistic equation model, occurs of a bifurcation point, parameter sets for which a periodic behavior occur and parameter sets for which a chaotic behavior occur.


6  Conclusions 

The discrete dynamical system of the Logistic equation model describes the dynamical properties for the case r = 1 and the time is discrete t = 1,2,… . 

On the other hand, the discontinuous dynamical system of the Logistic equation model describes the dynamical properties for different values of the delayed parameter r ( R+ and the time t ( [0, T] is continuous.


Figures (1),(4) agrees with the results of the asymptotic stability, this confirm that our numerics are correct. Also from figures (1),(4) and (2),(5), it locks like that there is a scale that gives identical chaos behavior.


This shows the richness of the models of discontinuous dynamical systems.
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